What are the system requirements for our Machine Learning Certification Training using Python?
You don’t have to worry about the System Requirements as you will be doing your Practical on a Cloud LAB environment. This environment already contains all the necessary software that will be required to execute your practicals.
How will I execute the practicals?
You will do your Assignments/Case Studies using Jupyter Notebook that is already installed on your Cloud LAB environment whose access details will be available on your LMS. You will be accessing your Cloud LAB environment from a browser. For any doubt, the 24*7 support team will promptly assist you.
Which case studies will be a part of this Machine Learning Certification Training using Python?
This course comprises of 34 case studies that will enrich your learning experience. In addition, we also have 3 Projects that will enhance your implementation skills. Below are few case studies which are part of this course:
- Case Study 1: Maple Leaves Ltd is a start-up company which makes herbs from different types of plants and its leaves. Currently the system they use to classify the trees which they import in a batch is quite manual. A laborer from his experience decides the leaf type and subtype of plant family. They have asked us to automate this process and remove any manual intervention from this process. You have to classify the plant leaves by various classifiers from different metrics of the leaves and to choose the best classifier for future reference.
- Case Study 2: BookRent is the largest online and offline book rental chain in India. Company charges a fixed fee per month plus rental per book. So, company makes more money when user rent more books. You as an ML expert and must model recommendation engine so that user gets recommendation of books based on behavior of similar users. This will ensure that users are renting books based on their individual taste. Company is still unprofitable and is looking to improve both revenue and profit. Compare the Error using two approaches – User Based Vs Item Based
- Case Study 3: Handle missing values and fit a decision tree and compare its accuracy with random forest classifier. Predict the survival of a horse based on various observed medical conditions. Load the data from ‘horses.csv’ and observe whether it contains missing values. Replace the missing values by the most frequent value in each column. Fit a decision tree classifier and observe the accuracy. Fit a random forest classifier and observe the accuracy.
- Case Study 4: Principal component analysis using scikit learn. Load the digits dataset from sklearn and write a helper function to plot the image. Fit a logistic regression model and observe the accuracy. Using scikit learn perform a PCA transformation such that the transformed dataset can explain 95% of the variance in the original dataset. Compare it with a model and also comment on the accuracy. Compute the confusion matrix and count the number of instances that has gone wrong. For each of the wrong sample, plot the digit along with predicted and original label.
- Case Study 5: Read the datafile “letterCG.data” and set all the numerical attributes as features. Split the data in to train and test sets. Fit a sequence of AdaBoostClassifier with varying number of weak learners ranging from 1 to 16, keeping the max_depth as 1. Plot the accuracy on test set against the number of weak learners, using decision tree classifier as the base classifier.
Which kind of projects will be a part of this Machine Learning Certification Training using Python?
- Project #1:
Industry: Social Media
Problem Statement: You as ML expert have to do analysis and modeling to predict the number of shares of an article given the input parameters.
Actions to be performed: Load the corresponding dataset. Perform data wrangling, visualization of the data and detect the outliers, if any. Use the plotly library in Python to draw useful insights out of data. Perform regression modeling on the dataset as well as decision tree regressor to achieve your goal. Also, use scaling processes, PCA along with boosting techniques to optimize your model to the fullest.
- Project #2:
Industry: FMCG
Problem Statement: You as an ML expert have to cluster the countries based on various sales data provided to you across years.
Actions to be performed: You have to apply an unsupervised learning technique like K means or Hierarchical clustering so as to get the final solution. But before that, you have to bring the exports (in tons) of all countries down to the same scale across years. Plus, as this solution needs to be repeatable you will have to do PCA so as to get the principal components which explain the max variance.
What if I miss a class?
You will never miss a lecture at CertAdda You can choose either of the two options: View the recorded session of the class available in your LMS or You can attend the missed session, in any other live batch.
Will I get placement assistance?
To help you in this endeavor, we have added a resume builder tool in your LMS. Now, you will be able to create a winning resume in just 3 easy steps. You will have unlimited access to use these templates across different roles and designations. All you need to do is, log in to your LMS and click on the “create your resume” option.
Can I attend a demo session before enrollment?
We have limited number of participants in a live session to maintain the Quality Standards. So, unfortunately participation in a live class without enrollment is not possible. However, you can go through the sample class recording and it would give you a clear insight about how are the classes conducted, quality of instructors and the level of interaction in a class.
Who are the instructors?
All the instructors at CertAdda are practitioners from the Industry with minimum 10-12 yrs of relevant IT experience. They are subject matter experts and are trained by CertAdda for providing an awesome learning experience to the participants.
What if I have more queries?
Just give us a CALL at +91 8178510474 / +91 9967920486 OR email at admin@certadda.com